592 research outputs found

    Lipid membrane-mediated attraction between curvature inducing objects

    Get PDF
    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles

    Some Slaughter and Carcass Traits of the Lambs of Dalmatian Pramenka Reared in Three Different Fattening Systems

    Get PDF
    In order to determine the impact of different fattening system (I - milk, pasture; II - indoors, milk, grains, III - milk, pasture, concentrate) on slaughter value and carcass quality of the lambs of Dalmatian Pramenka, 18 lambs (100 ± 5 days old), 6 in each group, were slaughtered. Lambs of one group were from the same flock and selected by birth weight (2.00 ± 0.20 kg). After slaughtering and cutting the carcasses into halves, in order to determine the share of legs and shoulders as well as certain tissues in the halves, the legs and shoulders were separated from the halves and total dissection was made. The significant differences (P<0.05) of slaughter weight (I - 21.17 kg, II - 23.25 kg, III - 26.25 kg) and hot carcass weight (I - 9.98 kg, II - 11.92 kg, III - 12.92 kg) among three groups were found. The legs II (1.65 kg) and III (1.71 kg) were significantly heavier (P<0.001) than legs I (1.32 kg), as well as shoulders (I - 0.52 kg, II - 0.65 kg, III - 0.69 kg; P<0.01). Total dissection of the halves established these tissues ratio: muscle 51.25 %, fat 10.18 %, connective 13.93%, bone 23.04% and other tissues 2.32%. The biggest quantity of muscle tissue was found in halves III (3.27 kg) what was more (P<0.05) than in halves II (2.83 kg) and I (2.50 kg). However, the biggest quantity of fat was found in halves II (0.85 kg) what was more (P<0.01) than in halves I (0.33 kg) and III (0.52 kg). Therefore, the addition of concentrate in pasture fattening system (III) increased the muscularity, without significantly increasing the amount of fat in the lamb carcass

    Reaction rate theory for supramolecular kinetics: application to protein aggregation

    Get PDF
    Probing the reaction mechanisms of supramolecular processes in soft- and biological matter, such as protein aggregation, is inherently challenging. These processes emerge from the simultaneous action of multiple molecular mechanisms, each of which is associated with the rearrangement of a large number of weak bonds, resulting in a complex free energy landscape with many kinetic barriers. Reaction rate measurements of supramolecular processes at different temperatures can offer unprecedented insights into the underlying molecular mechanisms and their thermodynamic properties. However, to be able to interpret such measurements in terms of the underlying microscopic mechanisms, a key challenge is to establish which properties of the complex free energy landscapes are probed by the reaction rate. Here, we present a reaction rate theory for supramolecular kinetics based on Kramers rate theory for diffusive reactions over multiple kinetic barriers, and apply the results to protein aggregation. Using this framework and Monte Carlo simulations, we show that reaction rates for protein aggregation are of the Arrhenius-Eyring type and that the associated activation energies probe only one relevant barrier along the respective free energy landscapes. We apply this advancement to interpret, both in experiments and in coarse-grained computer simulations, reaction rate measurements of amyloid aggregation kinetics in terms of the underlying molecular mechanisms and associated thermodynamic signatures. Our results establish a general platform for probing the mechanisms and energetics of supramolecular phenomena in soft- and biological matter using the framework of chemical kinetics

    The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    Get PDF
    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    1H NMR-based profiling reveals differential immune-metabolic networks during influenza virus infection in obese mice

    Get PDF
    Obese individuals are at greater risk for death from influenza virus infection. Paralleling human evidence, obese mice are also more susceptible to influenza infection mortality. However, the underlying mechanisms driving greater influenza severity in the obese remain unclear. Metabolic profiling has been utilized in infectious disease models to enhance prognostic or diagnostic methods, and to gain insight into disease pathogenesis by providing a more global picture of dynamic infection responses. Herein, metabolic profiling was used to develop a deeper understanding of the complex processes contributing to impaired influenza protection in obese mice and to facilitate generation of new explanatory hypotheses. Diet-induced obese and lean mice were infected with influenza A/Puerto Rico/8/34. 1H nuclear magnetic resonance-based metabolic profiling of urine, feces, lung, liver, mesenteric white adipose tissue, bronchoalveolar lavage fluid and serum revealed distinct metabolic signatures in infected obese mice, including perturbations in nucleotide, vitamin, ketone body, amino acid, carbohydrate, choline and lipid metabolic pathways. Further, metabolic data was integrated with immune analyses to obtain a more comprehensive understanding of potential immune-metabolic interactions. Of interest, uncovered metabolic signatures in urine and feces allowed for discrimination of infection status in both lean and obese mice at an early influenza time point, which holds prognostic and diagnostic implications for this methodology. These results confirm that obesity causes distinct metabolic perturbations during influenza infection and provide a basis for generation of new hypotheses and use of this methodology in detection of putative biomarkers and metabolic patterns to predict influenza infection outcome
    • 

    corecore